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Abstract statistical encoding of lexicalised features such as

predicates, head words, local contexts and PoS by

Our system for semantic role labeling is
multi-stage in nature, being based on tree
pruning techniques, statistical methods for
lexicalised feature encoding, and a C4.5

means of probability distributions provides an effi-

cient way of representing the data, with the feature
vectors having a small dimensionality and allowing

to abstract from single words.

decision tree classifier. We use both shal-
low and deep syntactic information from
automatically generated chunks and parse
trees, and develop a model for learning
the semantic arguments of predicates as a
multi-class decision problem. We evalu-
ate the performance on a set of relatively
‘cheap’ features and report an Bcore of
68.13% on the overall test set.

2 System description

2.1 Preprocessing

During preprocessing the predicates’ semantic argu-
ments are mapped to the nodes in the parse trees, a
set of hand-crafted shallow tree pruning rules are ap-
plied, probability distributions for feature represen-
tation are generated from training dgtand feature
vectors are extracted. Those are finally fed into the
classifier for semantic role classification.

1 Introduction 2.1.1 Tree node mapping of semantic

This paper presents a system for the CoNLL 2005 arguments and named entities
Semantic Role Labeling shared task (Carreras &ollowing Gildea & Jurafsky (2002), (i) labels
Marquez, 2005), which is based on the current renatching more than one constituent due to non-
lease of the English PropBank data (Palmer et abranching nodes are taken as labels of higher con-
2005). For the 2005 edition of the shared task argtituents, (ii) in cases of labels with no correspond-
available both syntactic and semantic informationing parse constituent, these are assigned to the par-
Accordingly, we make use of both clausal, chunkial match given by the constituent spanning the
and deep syntactic (tree structure) features, namsHortest portion of the sentence beginning at the la-
entity information, as well as statistical representabel’s span left boundary and lying entirely within it.
tions for lexical item encoding. We drop the role or named entity label if such suit-
The set of features and their encoding reflect thable constituent could not be fouhd
necessity of limiting the complexity and dimension- 1 5ther processing steps assume a uniform treatment of
ality of the input space. They also provide the classoth training and test data.

sifier with enough information. We explore here the “The percentage of roles for which no valid tree node could
be found amounts to 3% for the training and 7% for the devel-

u;e ofa mm'_m"_”ll set of compact features for SeMalyyment set. These results are compatible with the performance
tic role prediction, and show that a feature-baseef the employed parser (Collins, 1999).



2.1.2 Tree pruning those labels which account for at least 0.1% of
The tagged trees are further processed by applying the overall available semantic arguments in the
the following pruning rules: training data. We replace the label for every

phrase type category below this threshold with

e All punctuation nodes are removed. Thisis for g generidUNKlabel. This reduces the number
removing punctuation information, as well as of labels from 72 to 18.

for aligning spans or%the syntactic nodes withbosition: the position of the constituent with re-
PropBank constituents ' ~ spect to the target predicateefore or after).

* Ifanode is unary pranchlng and its Qaughter Iixdjacency: whether the right (if before) or left (if
als_o unary branching, the daughter is removed. after) boundary of the constituent asjjacent,
This allows to remove redundant nodes span- non-adjacent or inside the predicate’s chunk.
ning the same tokens in the sentence. ]

. . Clause: whether the constituent belongs to the
¢ If a node has only preterminal children, these clause of the predicate or not

are removed. This allows to internally collapse N _ _ _
base phrases such as base NPs. Proposition size: measures relative to the proposi-

tion size, such as (i) the number of constituents
Tree pruning was carried out in order to reduce the and (ii) predicates in the proposition.
number of nodes from which features were to be exzonstituent size: measures relative to the con-
tracted later. This limits the number of candidate  gtituent size, namely (i) the number of tokens
constituents for role labeling, and removes redun-  and (ji) subconstituents (viz., non-leaf rooted
dant information produced by the pipeline of previ-  gyptrees) of the constituent.

ous components (i.e. PoStags of preterminal label redicate: the predicate lemma, represented as the

as "‘;e('j' o thTehSparS?”efS alnd fragme”:ﬁ“o” Ofkf € probability distributionP(r|p) of the predicate
input data. €se simple Tules reduce the number p of taking one of the available semantic

) : 0
of constltu_er_1ts given by the parser output by 38.4% roles. For unseen predicates we assume a uni-
on the training set, and by 38.7% on the develop- ot

N form distribution.
ment set, at the cost of limiting the coverage of the =~ hether th di L )
system by removing approximately 2% of the tar-Vo'C?' whether t_ e pre |c§tgc;s EF:_'VS (_)fr aassved_
get role labeled constituents. On the development orm’. Passive \{0|ce IS er!tl e _' the predi-
set, the number of constituents remaining on top of ;:ates fPoi tag i¥BNand delther It fSHIOWS a
pruning is 81,193 of which 7,558 are semantic ar- orm ofto be or to get, or it does not belong to

guments, with a performance upper-bound of 90.6% a VP chunk, or is immediately preceded by an
= NP chunk.

Head word: the head word of the constituent,
2.1.3 Features represented as the probability distribution
Given the pruned tree structures, we traverse the tree P(r|hw) of the head wordhw of heading a

bottom-up left-to-right. For each non-terminal node  phrase filling one of the available seman-
whose span does not overlap the predicate we extract tic roles. For unseen words we back off on a
the following features: phrasal model by using the probability distri-

bution P(r|pt) of the phrase typegt of filling a
Phrase type: the syntactic category of the con- - (rlpt) P ype g

. semantic slot:.
stituent (NP, PP, ADVP, etc.). In order to reduce q d PoS: th S of the head d of th
the number of phrase labels, we retained onlij_'ea word Pos:the PoS of the head word of the

- constituent, similarly represented as the proba-

*We noted during prototyping that in many cases no tree  hjlity distribution P(r|pos) of a PoSpos of be-
node fully matching a role constituent could be found, as the | . . fill fth i
latter did not include punctuation tokens, whereas in Collins’ ongingto a CPnSt'tuent illing one of the avail-
trees the punctuation terminals are included within the preced-  abler semantic roles.

ing phrases. This precludespriori the output to align to the . . . .
gold standard PropBank annotation and we use therefore pru||19Cal lexical context: the words in the constituent

ing as a recovery strategy. other than the head word, represented as the



averaged probability distributions of eadh dual processor server with 2GB memaryraining

th non-head wordw; of occurring in one time was of approximately 17 minutes. The final

of the availabler semantic roles, namely system was trained using all of the available training

% ™ P(r|w;) for m non-head words in the data from sections 2—21 of the Penn TreeBank. This
constituent. For each unseen word we back ofimounts to 2,250,887 input constituents of which
by using the probability distributio®(r|pos;)  10% are norNULL examples. Interestingly, during
of the PoSpos; of filling a semantic role*. prototyping we first limited ourselves to training and

Named entities: the label of the named entity drawing probability distributions for feature repre-
which spans the same words as the constituersigntation from sections 15-18 only. This yielded
as well as the label of the largest named era very low performance (57.23%, Fdevelopment
tity embedded within the constituent. Both val- set). A substantial performance increase was given
ues are set tolULL if such labels could not be by still training on sections 15-18, but using the
found. probability distributions generated from sections 2—

Path: the number of intervening NPB, NP, VP, VP-21 (64.43% Ir, development set). This suggests that
A, PP, PP-A, S, S-A and SBAR nodes along théhe system is only marginally sensitive to the train-
path from the constituent to the predicate. ~ ing dataset size, but pivotally relies on taking proba-

Distance: the distance from the target predicatePility distributions from a large amount of data.
measured as (i) the number of nodes from the In order to make the task easier and overcome the

constituent to the lowest node in the tree domuneven role class distribution, we limited the learner

inating both the constituent and the predicatd0 classify only those 16 roles accounting for at least

(i) the number of nodes from the predicate td-5% of the total number of semantic arguments in

the former common dominating ncddiii) the ~ the training dat?

number of chunks between the base phrase of .

the constituent's head and the predicate chunk;3 Post-processing

(iv) the number of tokens between the head oAs our system does not build an overall sen-

the constituent and the predicate. tence contextual representation, it systematically
22 Classifier produced errors such as embedded role labeling. In

- _ particular, since no embedding is observed for the
We used the YaDTimplementation of the C4.5 de- gomantic arguments of predicates, in case of (multi-

cision tree alogorithm_ (Quinlan, 1993). Parametefq) embeddings the classifier output was automat-
selection (99% pruning confidence, at least 10 ing41y nost-processed to retain only the largest em-

stances per leaf node) was carried out by performing, yqing constituent. Evaluation on the development
10-fold cross-validation on the development set. <ot has shown that this does not significantly im-

Data preprocessing and feature vector generatiofy, e nerformance, still it provides a much more
took approximately 2.5 hours (training set, mcludmgsane, output. Besides, we make use of a simple

probability distributiqn generation), 5 minutes (de'technique for avoiding multiplé0 or Al role as-
velopment) and 7 minutes (test) on a 2GHz Opterogynments within the same proposition, based on

“This feature was introduced as the information provided bgonstituent position and predicate voice. In case of

lexical heads does not seem to suffice in many cases. This i i i P i
shown by head word ambiguities, such Z8C and TMP ar- Multiple AO labels, if the predicate is in active form,

guments occurring in similar prepositional syntactic configufh€ Secondh0 occurrence is replaced withl, else
rations — i.e. the prepositiom, which can be head of both we replace the first occurrence. Similarly, in case of

AM-TMPand AM-LOC constituents, as in October andin ; : : P :
New York. The idea is therefore to look at the words in the con-mUItIpIeAl labels, if the predicate is in active form,

stituents other than the head, and build up an overall constitueti€ firstAl occurrence is replaced with0, else we

representation, thus making use of statistical lexical information

for role disambiguation. "We used only a single CPU at runtime, since the implemen-
SThese distance measures along the tree path between th#on is not parallelised.

constituent and the predicate were kept separate, in order to in- #These include numbered argumem® (to A4), adjuncts

directly includeembedding level information into the model. (ADV, DIS, LOG MNRMODNEG PNG TMP, and references
Shttp:/Awww.di.unipi.it ruggieri/software.html (R-AO0 andR-Al).



Precision] Recall | Fs—. case, the most informative features were both dis-
Development 71.82% | 61.60% | 66.32 ’ .. . . .
Test WSJ 75.05% | 64.81% | 6956 tance/position metrics (distance and adjacency) and
Test Brown 66.69% | 52.14% | 58.52 lexicalized features (head word and predicate).
Test WSJ+Brown| 74.02% | 63.12% | 68.13
4 Conclusion
Test WSJ Precision] Recall | Fg=1
Overall 75.05% | 64.81% | 69.56 Semantic role labeling is a difficult task, and accord-
0, 0, . .
ﬁ? ;gggoﬁ ééggoﬁ ;g'ig ingly, how to achieve an accurate and robust perfor-
A2 62.28% | 52.07% | 56.72 mance is still an open question. In our work we
A3 63-813@ 38-733@ 48.20 used a limited set of syntactic tree based distance
ﬁg 73_‘8302’ 63_'(7)302’ 63_‘88 and size metrics coupled with raw lexical statistics,
AM-ADV 60.00% | 42.69% | 49.88 and showed that such ‘lazy learning’ configuration
AM-CAU 0.00% | 0.00% | 0.00 can still achieve a reasonable performance.
AM-DIR 0.00% | 0.00% | 0.00 . .
AM-DIS 75.97% | 73.12% | 74.52 We concentrated on reducing the complexity
AM-EXT 0.00% | 0.00% | 0.00 given by the number and dimensionality of the in-
AM-LOC 54.09% | 47.38% | 50.51 i i i o
stances to be classified during learning. This is the
AM-MNR 58.67% | 46.22% | 51.71 o : 9 g :
AM-MOD 97.43% | 96.37% | 96.90 core motivation behind performing tree pruning and
AM-NEG 97.78% | 95.65% | 96.70 statistical feature encoding. This also helped us to
ﬁnggg 45'3;(;‘)’ 38'38((;‘)’ 38'88 avoid the use of sparse features such as the explicit
AM-REC 0.00% | 000% | 0.00 path in the parse tree between the candidate con-
AM-TMP 75-41243 71-11243 73.20 stituent and the predicate, and the predicate’s sub-
E:ﬁg %8202 gg‘ggof; g;‘gg categorization rule (cf. e.g. Pradhan et al. (2004)).
R-A2 0.00% | 0.00% | 0.00 Future work will concentrate on benchmarking
R-A3 0.00% | 0.00% | 0.00 this approach within alternative architectures (i.e.
R-A4 0.00% | 0.00% | 0.00 e . :
R-AM-ADV 000% | 000%| 0.00 two-phase with filtering) and different learning
R-AM-CAU 0.00% | 0.00% | 0.00 schemes (i.e. vector-based methods such as Support
R-AM-EXT 0.00% 0.00% | 0.00 Vector Machines and Artificial Neural Networks).
R-AM-LOC 0.00% | 0.00% | 0.00
R-AM-MNR 0.00% | 0.00% | 0.00
R-AM-TMP 0.00% | 0.00% | 0.00 Acknowledgements: This work has been funded
LV [ 98.63%] 98.63%] 98.63] by the Klaus Tschira Foundation, Heidelberg, Ger-

many. The first author has been supported by a KTF

Table 1: Overall results (top) and detailed results ogrant (09.003.2004).
the WSJ test (bottom).

replace the second occurrence.

3 Results
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